这一操作不仅会对设备的整体结构带来一定挑战,还极大地增加了加工制造的难度系数。
因此江辰必须对激光发射器的设计结构进行改进,以确保微通道技术的引入不会对激光束的质量产生任何负面影响。
设备结构很好解决让昊天不断的进行加工测试就行,接下来的关键便是选择合适的材料。
与功率较低的民用设备不同,江辰所追求的高能激光发射器旨在应对低空、慢速、小型飞行器等目标,因此在功率需求上存在着显着差异。
若以无人机为打击对象,50千瓦的功率便足以实现击落效果。
然而若目标是速度快的导弹,功率需求就提升至200千瓦以上,以确保足够的摧毁能力。
考虑到舰载武器在实际应用中可能面临多种复杂情况,加入功率切换功能显得尤为必要,以适应不同作战需求。
若以最大功率200千瓦来设计这款激光武器,其有效射程可达10公里左右。
在这一范围内,激光武器能够精准且有效地摧毁目标。
一旦距离超出此射程,由于激光束的发散、大气环境的干扰、目标物体的热特性及吸收率等多种因素的影响。
激光武器的打击效果将会大打折扣,难以达到预期。
由于激光生成的物理机制,增益介质选定为玻璃光纤,而基质材料对激光的特性、工作效率以及运行稳定性均起着至关重要的决定性作用。
若要使激光发射器所发射的激光能够有效摧毁目标,最优选择是生成中红外波段的激光。
通常情况下的激光发射器所产生的红外激光更多地被应用于造成目标失明或进行干扰,而并不适宜在军事作战环境中使用。
因此传统的石英玻璃基质因为具有较高的声子能量,无法支持中红外激光的有效传输,故而不适合作为基质材料。
相比之下,氟化物玻璃基质成为了一个更为理想的选择。